Coordinated Multi-Agent Reinforcement Learning in Networked Distributed POMDPs

نویسندگان

  • Chongjie Zhang
  • Victor R. Lesser
چکیده

In many multi-agent applications such as distributed sensor nets, a network of agents act collaboratively under uncertainty and local interactions. Networked Distributed POMDP (ND-POMDP) provides a framework to model such cooperative multi-agent decision making. Existing work on ND-POMDPs has focused on offline techniques that require accurate models, which are usually costly to obtain in practice. This paper presents a model-free, scalable learning approach that synthesizes multi-agent reinforcement learning (MARL) and distributed constraint optimization (DCOP). By exploiting structured interaction in ND-POMDPs, our approach distributes the learning of the joint policy and employs DCOP techniques to coordinate distributed learning to ensure the global learning performance. Our approach can learn a globally optimal policy for ND-POMDPs with a property called groupwise observability. Experimental results show that, with communication during learning and execution, our approach significantly outperforms the nearly-optimal non-communication policies computed offline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated Multi-Agent Learning for Decentralized POMDPs

In many multi-agent applications such as distributed sensor nets, a network of agents act collaboratively under uncertainty and local interactions. Networked Distributed POMDP (ND-POMDP) provides a framework to model such cooperative multi-agent decision making. Existing work on ND-POMDPs has focused on offline techniques that require accurate models, which are usually costly to obtain in pract...

متن کامل

Reinforcement Learning for Decentralized Planning Under Uncertainty (Doctoral Consortium)

Decentralized partially-observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. But in real world scenarios, model parameters may not be known a priori, or may be difficult to specify. We prop...

متن کامل

Solving Finite Horizon Decentralized POMDPs by Distributed Reinforcement Learning

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. We propose a distributed reinforcement learning approach, where agents take turns to learn best responses to each other’s policies. T...

متن کامل

Sample Bounded Distributed Reinforcement Learning for Decentralized POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. We propose a distributed reinforcement learning approach, where agents take turns to learn best responses to each other’s policies. T...

متن کامل

Pruning for Monte Carlo Distributed Reinforcement Learning in Decentralized POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. Recently a Monte Carlo based distributed reinforcement learning approach was proposed, where agents take turns to learn best response...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011